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HALL EFFECT DEVICES AS MAGNETOME?IERS 

IN CRYOGENIC APPLICATIONS 

by Thomas B. Sanford 

Lewis Research Center 

SUMMARY 

Eight representative samples of commercial Hall effect devices were tested 
at 4.2O K to determine their utility as magnetometers for cryogenic applica- 
tions. Although cool-down periods of 10 to 15 minutes were used in an attempt 
to reduce the thermal shock, several units failed after one or more immersions 
in liquid helium. The low-temperature behavior of the tested units differed 
qualitatively from the room temperature response in that there were oscilla- 
tions in the Hall voltage as a function of magnetic field. The procedure for 
use and the low-temperature response of the devices to magnetic fields up to 
70 kilogauss are discussed. 

INTRODUCTION 

Investigations of superconductivity and the magnetic behavior of materials 
at very low temperatures often require a measurement of magnetic fields in 
small volumes. 
fields (ref. 1) are the magnetoresistance of bismuth wire, the saturation of 
ferromagnetic materials, nuclear magnetic resonance, the use of search and ro- 
tating coils, and the Hall effect. 

Among the many techniques that are used to measure magnetic 

Probably the most widely used magnetometer for low-temperature application 
takes advantage of the large magnetoresistance of bismuth. The resistance of 
the bismuth wire at a given temperature is directly related to the magnetic 
field present, but this resistance occasionally changes unpredictably. 

Flux gate techniques, which utilize the abrupt saturation of certain fer- 
romagnetic materials, have yet to be applied to low-temperature work. This 
method should be applicable at cryogenic temperatures but not in magnetic 
fields of the order of 50 to 100 kilogauss because of the relatively low satu- 
ration levels of ferromagnetic materials. 

Nuclear magnetic resonance methods determine magnetic fields through a 
measurement of the frequency of precession of nuclei in a magnetic field. For 
proper operation, this technique needs highly homogeneous fields, but this con- 
dition is not often satisfied in practice. 



The use of a r o t a t i n g  c o i l  is  mechanically troublesome a t  low tempera- 
t u re s ,  s ince moving pas t s  tend t o  f r o s t  and jam. 

One technique that has been used successful ly  at  low temperatures i s  t h e  
use of a search c o i l .  
of a c o i l  as it is brought i n t o  or removed from t h e  t e s t  a rea  or as t h e  f i e l d  
i s  establ ished with t h e  c o i l  i n  place. This method y ie lds  a measure of t h e  
magnetic f lux through t h e  c o i l  and hence t h e  magnetic f i e l d  there .  Adaptation 
of t h i s  technique f o r  continuous measurement i s  d i f f i c u l t .  

This technique involves t h e  time i n t e g r a l  of t h e  output 

The H a l l  e f f e c t  seemed t o  o f f e r  t h e  most promise f o r  high f i e l d  measure- 
ment a t  lowtemperatures,  and it was therefore  decided t o  inves t iga te  comer-  
c i a l l y  produced H a l l  e f f e c t  probes. 
s tudied f o r  many years,  t h e i r  use as magnetometers f o r  cryogenic appl ica t ions  
has been neglected. I n  t h e  present s tudy e ight  commercial H a l l  devices were 
t e s t e d  i n  magnetic f i e l d s  up t o  70 kilogauss a t  liquid-helium temperature 
(4.2' K ) .  

Although H a l l  e f f e c t  devices have been 

HALL EFFECT 

A charge movLng An t h e  presence of a magnetic f i e l d  experiences a Lorzntz 
force  given by qv x B, where q is t h e  charge, v is i ts  veloci ty ,  and B i s  
t h e  f i e l d  s t rength.  When charge c a r r i e r s  are constrained t o  move i n  a conduc- 
t o r ,  t h e  c a r r i e r s  tend t o  be def lected toward one of t h e  boundaries of t h e  con- 
ductor. 
c e l s  t h e  Lorentz force. 
times t h e  width of t h e  sample w, can be used as a measure of B. For t h e  
f ree-electron model of metals t h e  r e l a t i o n  i s  given by 

-+ 

These def lec ted  c a r r i e r s  e s t ab l i sh  an  e l e c t r i c  f i e l d  EH, which can- 
The H a l l  voltage VH, which i s  t h i s  e l e c t r i c  f i e l d  

V H = % w = v B W = R -  I B  
t 

where R = l /ne  i s  ca l led  the  H a l l  coef f ic ien t ,  I i s  t h e  control  current,  
t i s  the  sample thickness,  n i s  the  number of conduction e lec t rons  per  u n i t  
volume, and e i s  t h e  e lec t ronic  charge. For conductors, v i s  s m a l l  because 
of t h e  l a rge  concentration of conduction electrons,  whereas i n  semiconductors 
t h e  charge c a r r i e r  ve loc i ty  i s  qu i t e  large.  Substances such as indium arsenide 
and indium antimonide ( r e f .  2) exhib i t  l a rge  c a r r i e r  ve loc i t i e s  and hence pro- 
duce usable Hall voltages. For these  p a r t i c u l a r  semiconductor mater ia l s  t he  
H a l l  voltage i s  known t o  have only a s m a l l  temperature dependence, at l e a s t  
near room temperature. The above s implif ied H a l l  voltage r e l a t ions  a re  not 
s t r i c t l y  va l id  for semiconductors. The r e l a t i o n  VH = R I B / t  can be retained, 
bu t  R i s  a more complicated coef f ic ien t  than l/ne. 

APPARATUS AND PROCEDURE 

H a l l  Effect  Devices 

Tests were performed on representa t ive  devices produced by severa l  manu- 
f ac tu re r s .  These samples were of both t ransverse and a x i a l  designs and of many 
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d i f f e r e n t  s i z e s .  The a c t u a l  sensing a rea  o r  ac t ive  a rea  ranged from about 0.03 
t o  about 0.0036 square inch. Even smaller units of both the  a x i a l  and the  
transverse types a re  available.  

Experimental Details 

Each device was attached with an epoxy cement t o  one end of a type 304 
s t a i n l e s s - s t e e l  thin-wall  tube with t h e  lead w i r e s  contained within the  tube. 
A p l a s t i c  disk was attached t o  t h e  t o p  of each tube by a compression f i t t i n g  
with s p l i t  f e r r u l e  t o  allow probe length adjustment. This disk supported t h e  
probe i n  a s t a i n l e s s - s t e e l  Dewar and establ ished t h e  correct pos i t ion  of t h e  
probe i n  t h e  center of a high-field solenoid. The solenoid used w a s  water 
cooled with a 4-inch inside diameter. Its construction and performance a r e  de- 
scribed i n  reference 3. The probe and t h e  H a l l  device a r e  i l l u s t r a t e d  i n  f i g -  
ure 1. 

Cable connector 

compression fitting 

Thin -wal I 304 stainless-steel tube / CD-7762 

-Hall device cemented 
to tube end 

(a) Probe construction 

f Direction of 
Hall output IeadsA magnetic fie'd 

current  
lead.+ 

TSemiconductor  

Control current lead 

(b) Hall effect device. 

Figure 1. - Construction of probe and typical Hall effect device. 

The measured var ia t ion  of res i s tance  with magnetic f i e l d  f o r  a t y p i c a l  
Hall e f f e c t  device a t  4.2O K i s  shown i n  f igure  2. With la rge  magnetoresis- 
tance e f f e c t s  it is important t o  have a constant-current power supply with ade- 
quate range t o  produce t h e  d-c control  current f o r  t h e  device. 

The H a l l  output voltage as a function of t h e  magnetic f i e l d  was recorded 
by an xy p l o t t e r .  The proport ional i ty  of t h e  solenoid current t o  the  f i e l d  
produced by t h e  solenoid allowed t h e  x-axis t o  be cal ibrated d i r e c t l y  i n  
kilogauss. 

Tests were performed a t  r o o m  temperature and a t  liquid-helium tempera- 
t u r e s .  I n  these tes ts  t h e  current t o  t h e  device was held constant t o  within 
0 .1  percent, and the  magnetic f i e l d  was varied.  The room-temperature measure- 
ments w e r e  performed f i rs t  t o  e s t a b l i s h  a bas is  with which t o  compare t h e  low- 
temperature behavior of t h e  device. 
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Figure 2. - Effect of magnetic f ield on input resistance of Hall device at 4.20 K. 

RESULTS AND DISCUSSION 

Room-Temperature Tests 

Near room temperature (277' K ) ,  most of t h e  devices showed a nearly l i n e a r  
response t o  magnetic f i e l d  up t o  70 kilogauss, as i l l u s t r a t e d  i n  figure 3. 
Since t h e  operation of a l l  of t h e  devices t e s t e d  under these conditions w a s  
similar, only a t y p i c a l  curve i s  shown. 

Liquid-Helium-Temperature Tests 

The procedure t h a t  was adopted f o r  cooling the  u n i t s  t o  liquid-helium tem- 
perature (4.2O K )  required 10 t o  15 minutes f o r  completion and consisted of 
slowly lowering t h e  probes i n t o  l i q u i d  nitrogen, then i n t o  t h e  cold helium gas, 
and f i n a l l y  i n t o  the  l i q u i d  helium i t s e l f .  Unfortunately, not a l l  of t h e  
probes withstood the thermal shock. One u n i t  of t h e  o r i g i n a l  eight f a i l e d  on 
t h e  first t e s t .  Other u n i t s  f a i l e d  i n  l a t e r  t e s t s ,  and t h e  general  nature of 
these f a i l u r e s  indicated t h a t  they were due t o  separation of the  e l e c t r i c a l  
connections i n  t h e  sensing elements as a r e s u l t  of d i f f e r e n t i a l  expansions and 
contractions of t h e  probe mater ia ls .  This f a u l t  could probably be corrected by 
appropriate redesign of t h e  sensing element. 

The control  current used w a s  10 milliamperes, even though some of t h e  
u n i t s  were ra ted  Tor a current up t o  500 milliamperes at  room temperature. 
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Figure 3. - Field dependence of Hall voltage at 277' K. 
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Figure 4. - Deviation from l inearity of voltage output of Hall effect device at 4.20 K with periodic nature of oscillations shown. 
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Since t h e  r e s i s t ance  increased so much with increasing magnetic f i e l d ,  t h e  cur- 
r e n t  w a s  kept low t o  l i m i t  ohmic heating i n  t h e  sample. Currents of about 
100 milliamperes caused heat ing of t h e  H a l l  devices.  
unnecessary, however, and wasteful of l i q u i d  helium. 

Such high currents  were 

/ 

35 

A t  liquid-helium temperature t h e  H a l l  voltage output of t h e  devices as a 
funct ion of f i e l d  s t rength  deviated more s t rongly  from l i n e a r i t y  than at  room 
temperature. If t h e  deviat ions of t h e  curve from a s t r a i g h t  l i n e  are p lo t t ed  
against  inverse f i e l d  
f igu re  4. The per iodic  nature of these  o s c i l l a t i o n s  probably arises from pro- 
cesses analogous t o  those producing t h e  de Haas - van Alphen e f f e c t  i n  the  mag- 
ne t i c  suscep t ib i l i t y .  

1/B, they  r evea l  a pe r iod ic i ty  such as t h a t  shown i n  

,', 
/@ 

4 

A t  room temperature the  output voltage at zero magnetic f i e l d  ( n u l l  vo l t -  
age) w a s  l e s s  than 50 microvolts at a control  current  of 10 milliamperes. 
This value changed d r a s t i c a l l y  f o r  some of t h e  devices when they were immersed 
i n  l i qu id  helium. Since t h i s  voltage arose from misalinement of t h e  voltage 
contacts,  it implies again t h a t  t h e  contacts and leads were being s t ressed  by 
thermal e f f ec t s .  

i 

Figure 5 i l l u s t r a t e s  t yp ica l  output f o r  severa l  un i t s  operated a t  4.2' K. 
I n  general, a l l  of t h e  u n i t s  yielded outputs t h a t  were very s imi la r  with the  
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Figure 5. - Voltage characteristics of several Hall effect devices at 4.20 K as function of externally applied magnetic field. 
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exception of one u n i t ,  which gave considerably higher r e s u l t s  because it was 
made from evaporated films l a i d  onto a f e r r i t e  substrate .  

An attempt was  made t o  l i nea r i ze  t h e  output of each device a t  4.2' K i n  
t h e  range of O t o  15 kilogauss.  The output of c e r t a i n  u n i t s  could be forced t o  
have only small deviat ions from l i n e a r i t y  by properly loading the  H a l l  output 
with a res i s tance  ( f ig .  1; see p. 3). The deviation from l i n e a r i t y  under opt i -  
mum r e s i s t i v e  loading varied from device t o  device but w a s  of ten l e s s  than 2 
percent. A t yp ica l  example of t he  process of l i nea r i za t ion  of t he  H a l l  voltage 
i s  shown i n  f igu re  6. 
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Figure 6. - Linearization of Hall output at 4.20 K with external loading. 

I n  addi t ion  t o  the  data taken a t  4.2' K, da ta  were a l so  taken a t  1.3O K 
f o r  one u n i t .  The data taken a t  these  t w o  temperatures agreed t o  within 1 per- 
cent. All of t h e  devices t e s t e d  w e r e  therefore  expected t o  be similar i n  t h i s  
respect  and not t o  exhib i t  s ign i f i can t  changes i n  t h i s  temperature range. 

SUMMARY OF RESULTS 

Eight comnercially produced H a l l  devices were t e s t e d  and found t o  be use- 
f u l  f o r  low-temperature magnetic f i e l d  measurements. 
a t  4.2' K increased with magnetic f i e l d  but contained o s c i l l a t i o n s  contributed 

The H a l l  voltage output 
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by processes analogous t o  those causing t h e  de H a a s  - van Alphen o s c i l l a t i o n s  
of t h e  magnetic suscep t ib i l i t y .  
i n  temperature from 4.2' K had very l i t t l e  e f f e c t  on t h e  H a l l  voltage as a 
funct ion of magnetic f i e l d  s t rength.  Fa i lure  of some of t h e  devices occurred 
during t h e  cool-down process because of breakage of contacts  t o  t h e  semicon- 
ducting mater ia l .  
thermal shock without damage seems feas ib l e .  

For t h e  one sample t e s t e d  a t  1.3' K t h e  change 

Designing and construct ing devices t h a t  will withstand t h i s  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, February 4, 1964 
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